题目内容
已知一元二次方程的两根为m,n,则= .
在-2,π,,-(-3),中,正数有 个
把直线沿x轴向右平移2个单位,所得直线的函数解析式为 .
如图,已知二次函数:()和二次函数:()图象的顶点分别为M,N,与y轴分别交于点E,F.
(1)函数()的最小值为 ,当二次函数,的y值同时随着x的增大而减小时,x的取值范围是 ;
(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明);
(3)若二次函数的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程的解.
如图,正方形ABCD于正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).
(1)求对称中心的坐标;
(2)写出顶点B,C,B1,C1的坐标.
已知抛物线()过(﹣2,0),(2,3)两点,那么抛物线的对称轴( )
A.只能是x=﹣1
B.可能是y轴
C.在y轴右侧且在直线x=2的左侧
D.在y轴左侧且在直线x=﹣2的右侧
如图,已知二次函数L1:y=ax2-2ax+a+3(a>0)和二次函数L2:y=-a(x+1)2+1(a>0)图像的顶点分别为M,N,与y轴分别交于点E,F.
(1)函数y=ax2-2ax+a+3(a>0)的最小值为 ;当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是 ;
(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程-a(x+1)2+1=0的解.
已知抛物线y=ax2+bx+c(a>0)过(-2,0),(2,3)两点,那么抛物线的对称轴( )
A.只能是x=-1
D.在y轴左侧且在直线x=-2的右侧
如图,△ABC中,CD是边AB上的高,且.
(1)求证:△ACD∽△CBD;
(2)求∠ACB的大小.