题目内容
【题目】现有a枚棋子,按图1的方式摆放时刚好围成m个小正方形,按图2的方式摆放刚好围成2n个小正方形。
![]()
(1)用含m的代数式表示a,有a= ;用含n的代数式表示a,有a= ;
(2)若这a枚棋子按图3的方式摆放恰好围成3p个小正方形,
①P的值能取7吗?请说明理由;
②直接写出a的最小值:
【答案】(1)2m+2,3n+3;(2)①能,理由见解析;②8
【解析】
(1)根据图1每多一个正方形多用2枚棋子,写出摆放m个正方形所用的棋子的枚数;根据图2在两个小正方形的基础上,每多2个正方形多用3枚棋子,写出摆放2n个小正方形所用的棋子的枚数;
(2)①根据图3在三个小正方形的基础上,每多3个正方形多用4枚棋子,写出摆放3p个小正方形所用的棋子的枚数,当P的值取7时,可得出21个正方形共用32枚棋子;所以p可以取7;
②根据图3的摆放方式可得最少摆放三个正方形,可得出a的最小值
解:(1)由图可知,图1每多1个正方形,多用2枚棋子,
∴m个小正方形共用4+2(m-1)=2m+2枚棋子;
由图可知,图2两个小正方形的基础上,每多2个正方形多用3枚棋子,
∴2n个小正方形共用6+3(n-1)=3n+3 枚棋子;
故答案为:2m+2,3n+3;
(2)p可以取7
①根据图3在三个小正方形的基础上,每多3个正方形多用4枚棋子,
∴3p个小正方形共用8+4(p-1)=4p+4 枚棋子;
当p=7时,即21个正方形共用32枚棋子;
②根据图3的摆放方式可得最少摆放三个正方形,
∴a的最小值为:8
故答案为:8
练习册系列答案
相关题目