题目内容
如图,直线AB∥CD,则下列结论正确的是( )
A. ∠1=∠2 B. ∠3=∠4 C. ∠1+∠3=180° D. ∠3+∠4=180°
如图,平面直角坐标系xoy中,抛物线y=a(x+1)(x-9)经过A,B两点,四边形OABC
矩形,已知点A坐标为(0,6)。
(1) 求抛物线解析式;
(2) 点E在线段AC上移动(不与C重合),过点E作EF⊥BE,交x轴于点F.请判断的值是否变化;若不变,求出它的值;若变化,请说明理由。
(3)在(2)的条件下,若E在直线AC上移动,当点E关于直线BF的对称点在抛物线对称轴上时,请求出BE的长度。
如图所示,把一张长方形纸片ABCD沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′的度数为( )
A. 70° B. 65° C. 50° D. 25°
若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是____.
已知半径为5的⊙O是△ABC的外接圆.若∠ABC=25°,则劣弧的长为( )
A. B. C. D.
探究活动:
利用函数的图象(如图1)和性质,探究函数的图象与性质.
下面是小东的探究过程,请补充完整:
(1)函数的自变量x的取值范围是___________;
(2)如图2,小东列表描出了函数图象上部分点,请画出函数图象;
(3)解决问题:设方程的两根为、,且,方程
的两根为、,且.若,则、、、的大小关系为_____________________(用“<”连接).
如图,点A、B、C是⊙O上的三点,AB∥OC.
(1)求证:AC平分∠OAB.
(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求PE的长.
抛物线的顶点坐标是( )
A. (1,2) B. (1,-2) C. (-1,2) D. (-1,-2)
如果n边形每一个内角等于与它相邻外角的2倍,则n的值是( )
A. 4 B. 5 C. 6 D. 7