题目内容

如图,已知点A(8,0),sin∠ABO=
4
5
,抛物线经过点O、A,且顶点在△AOB的外接圆上,则此抛物线的解析式为(  )
A.y=-
1
2
x2+4x
B.y=-
1
8
x2+x
C.y=
1
2
x2-4x
或y=-
1
8
x2+x
D.y=-
1
2
x2+4x
或y=
1
8
x2-x

如图所示:连接AC,过圆心O′作EF⊥OA,
∵∠AOC=90°,∠ABO=∠OCA,
AO
AC
=
4
5

∵点A(8,0),
∴AC=10,
根据题意得出:AM=OM=4,AO′=5,
∴MO′=3,∴MF=2,
∴F点坐标为:(4,-2),
设过O,A,F的抛物线解析式为:y=a(x-4)2-2,
将A代入(8,0)得:
0=a(8-4)2-2,
解得:a=
1
8

∴此时抛物线解析式为:y=
1
8
(x-4)2-2=
1
8
x2-x,
根据题意得出:AM=OM=4,AO′=5,
∴MO′=3,∴ME=8,
∴E点坐标为:(4,8),
设过O,A,E的抛物线解析式为:y=a(x-4)2+8,
将A代入(8,0)得:
0=a(8-4)2+8,
解得:a=-
1
2

∴此时抛物线解析式为:y=-
1
2
(x-4)2+8=-
1
2
x2+x,
故选:D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网