题目内容
四边形ABCD中,AC和BD交于点E,若AC平分∠DAB,且AB=AE,AC=AD,有以下四个命题:①AC⊥BD;②BC=DE;③∠DBC=
∠DAB;④AB=BE=AE.其中命题一定成立的是
- A.①②
- B.②③
- C.①③
- D.②④
B
分析:根据等腰三角形的性质,等边三角形的判定,圆内接四边形的性质,全等三角形的性质判断各选项是否正确即可.
解答:∵AB=AE,一个三角形的直角边和斜边一定不相等,∴AC不垂直于BD,①错误;
利用边角边定理可证得△ADE≌△ABC,那么BC=DE,②正确;
由△ADE≌△ABC可得∠ADE=∠ACB,那么A,B,C,D四点共圆,∴∠DBC=∠DAC=
∠DAB,③正确;
△ABE不一定是等边三角形,那么④不一定正确;
②③正确,故选B.
点评:此题主要考查了全等三角形的性质,以及直角三角形中斜边最长;全等三角形的对应边相等;等边三角形的三边相等.
分析:根据等腰三角形的性质,等边三角形的判定,圆内接四边形的性质,全等三角形的性质判断各选项是否正确即可.
解答:∵AB=AE,一个三角形的直角边和斜边一定不相等,∴AC不垂直于BD,①错误;
利用边角边定理可证得△ADE≌△ABC,那么BC=DE,②正确;
由△ADE≌△ABC可得∠ADE=∠ACB,那么A,B,C,D四点共圆,∴∠DBC=∠DAC=
△ABE不一定是等边三角形,那么④不一定正确;
②③正确,故选B.
点评:此题主要考查了全等三角形的性质,以及直角三角形中斜边最长;全等三角形的对应边相等;等边三角形的三边相等.
练习册系列答案
相关题目