题目内容
【题目】如图,在平面直角坐标系
中,直线
与
轴交于点
,与直线
交于点
,点
的坐标为![]()
![]()
(1)求直线
的解析式;
(2)直线
与
轴交于点
,若点
是直线
上一动点(不与点
重合),当
与
相似时,求点
的坐标
【答案】(1)
;(2)(3,
),(2,2).
【解析】
试题分析:(1)首先设出一次函数解析式,将点A,D代入即可求出一次函数解析式;(2)先写出OB,OD,BC的长度,然后分两种情况讨论1:△BOD∽△BCE;2:△BOD∽△BEC.
试题解析:(1)设直线AD的解析式为y=kx+b
将点A
代入直线y=kx+b中得:
解得:![]()
直经AD的解析式为:![]()
(2)设点E的坐标为(m,
m+1)
令
得x=-2
点B的坐标为(-2,0)
令y=-x+3=0得x=3
点C的坐标为(3,0)
OB=2, OD=1, BC=5, BD=![]()
1. 当△BOD∽△BCE时,如图(1)所示,过点C作CE
BC交直线AB于E:
![]()
![]()
![]()
CE=![]()
![]()
m+1=
,解得m=3
此时E点的坐标为(3,
)
![]()
2. △BOD∽△BEC时,如图(2)所示,过点E作EF
BC于F点,则:
![]()
![]()
![]()
CE=![]()
BE=![]()
![]()
BE*CE=
EF*BC
![]()
![]()
EF=2
![]()
解得m=2
此时E点的坐标为(2,2)
当△BOD与△BCE相似时,满足条件的E坐标(3,
),(2,2).
![]()
练习册系列答案
相关题目