题目内容
已知:a、b是方程2x2-3x-1=0的两个根,则ab的值为( )
A. B. C. D. -
清朝康熙皇帝是我国历史上对数学很有兴趣的帝王近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步: =m;第二步: =k;第三步:分别用3、4、5乘以k,得三边长”.
(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;
(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.
若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为( )
A. 50° B. 80° C. 65°或50° D. 50°或80°
已知关于x的方程x2-(a+b)x+ab-1=0,x1,x2是此方程的两个实数根,现给出三个结论:①x1≠x2 ②x1x2<ab③x12+x12<a2+b2,则正确结论的序号是______________.
已知,m、n是一元二次方程x2-3x+2=0的两个实数根,则2m2-4mn-6m的值为( )
A. -12 B. 10 C. -8 D. -10
如图:在数轴上 A 点表示数 a,在 B 点表示数 b,O 点表示数 0,点 M 为数轴 上任意一点,对应的数为 x,且 a、b 满足|a+5|+(b-1)2 =0.
(1)a= ,b= ;
(2)A、B 两点的距离是 ,若点 M 到点 A、点 B 的距离相等,那么 x 的值是 ;
(3)若点 A 先沿着数轴向右移动 6 个单位长度,再向左移动 4 个单位长度后所对应的数字 是 ;
(4)如果点 M 以每秒 2 个单位长度的速度从点 O 向左运动时,点 A 每秒以 3 个单位长度 也向左运动,点 B 分别以每秒 1 个单位长度向右运动,且三点同时出发,假设 t 秒钟过后, 若点 M 与点 A 之间带的距离表示为 MA,点 M 与点 B 之间的距离表示为 MB,点 A 与点 B 之间的距离表示为 AB。则 MA= ,MB= ,AB= 。(用含 t 的代数式表 示);
(5)请问:3AM-BM 的值是否随着时间 t 的变化而变化?若变化,请说明理由;若不变, 请求其值.
计算题
(1)24+(-14)+(-16)+8;
(2);
(3);
(4);
(5)
物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月份的销售量达到400件.设二、三这两个月月平均增长率不变.
(1)求二、三这两个月的月平均增长率;
(2)从四月份起,商场采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?
的底数是______;指数是______;