题目内容

如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.

(1)求证:BG=CF.

(2)请你判断BE+CF与EF的大小关系,并说明理由.

(1)证明见解析;(2)BE+CF>EF.理由见解析. 【解析】试题分析:(1)先利用ASA判定△BGD≌△CFD,从而得出BG=CF; (2)再利用全等的性质可得GD=FD,再有DE⊥GF,从而得出EG=EF,两边和大于第三边从而得出BE+CF>EF. 试题解析:(1)∵BG∥AC, ∴∠DBG=∠DCF. ∵D为BC的中点, ∴BD=CD 又∵∠BDG...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网