题目内容
在一次社会活动中,四名同学分别就同一种商品的价格变化情况,给了如下四幅图,为了更直观、清楚地体现该商品的价格增长势头,你认为比较理想的是( )
A. B. C. D.
已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.
(1)求抛物线的解析式和顶点C的坐标;
(2)当∠APB为钝角时,求m的取值范围;
(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.
已知一个圆锥的三视图如图所示,则这个圆锥的侧面积为( )
A. 12π cm2 B. 15π cm2 C. 24π cm2 D. 30π cm2
小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为1米的圆,在不远处向圈内掷石子,且记录如下:
依此估计此封闭图形ABC的面积是_____m2.
如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF相交于点O,下列结论:
①∠DOC=90°,②OC=OE,③tan∠OCD=,④△COD的面积等于四边形BEOF的面积,正确的有 ( )
A. 1个 B. 2个 C. 3个 D. 4个
阅读材料:若,求m、n的值.
解: ,
,
.
根据你的观察,探究下面的问题:
(1)己知,求的值.
(2)已知△ABC的三边长a、b、c都是正整数,且满足,求边c的最大值.
(3) 若己知,求的值.
因式分【解析】
(1);
(2)
不等式的解集是( )
如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于________ 米.