题目内容
如图,E,F是平行四边形ABCD对角线AC上两点,AE=CF=AC.连接DE,DF并延长,分别交AB,BC于点G,H,连接GH,则的值为( )
A. B. C. D. 1
如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )
A. 三角形的稳定性 B. 两点之间线段最短
C. 两点确定一条直线 D. 垂线段最短
如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是 .
已知:如图,以等边△ABC的边BC为直径作⊙O,分别交AB,AC于点D,E,过点D作DF⊥AC交AC于点F.
(1)求证:DF是⊙O的切线;
(2)若等边△ABC的边长为8,求由、DF、EF围成的阴影部分面积.
如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____.
如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为( )
A. 30° B. 35° C. 40° D. 45°
某市共有一中、二中、三中等3所高中,有一天所有高二学生参加了一次数学测试,阅卷后老师们对第10题进行了分析,把每个学生的解答情况归结为下列四类情况之一:A(概念错误),B(计算错误),C(基本正确),D(完全正确).各校出现这四类情况的人数占本校高二学生数的百分比见下面的条形统计图:
已知一中高二学生有400名,这三所学校之问高二学生人数的比例见扇形统计图.
(1)求全市高二学生总数;
(2)求全市解答完全正确的高二学生数占高二学生总数的百分比;
(3)请你对三中高二数学老师提一个值得关注的教学建议,并说明理由.
下列计算正确的是( )
A. x3+x3=x6 B. 2x3-x3=x3 C. x2.x3=x6 D. (x2)3=x5
________________