题目内容
如图,在⊙O中,弦AB=4cm,点O到AB的距离OC的长是2cm,则⊙O的半径是 .
不等式组的解集在数轴上表示正确的是( )
在平面直角坐标系中,有平行四边形ABCD,点A坐标为(2,0),点C(5,-3),点B(4,1),则D点坐标为 .
某房地产开发公司计划建甲、乙两种户型的住房共80套,该公司所用建房资金不少于2850万元,甲种户型每套成本和售价分别为45万元和51万元,乙种户型每套成本和售价分别为30万元和35万元.设计划建甲种户型x套.
(1)该公司最少建甲种户型多少套?
(2)若甲种户型不超过32套,选择哪种建房方案,该公司获利最大?最大利润是多少?
(3)在(2)的条件下,根据国家房地产政策,公司计划每套甲种户型住房的售价降低a万元(0<a≤1.5),乙种户型住房的售价不变,且预计所建的两种住房能全部售出,直接写出该公司获得最大利润的方案.
先化简,再求值:,其中a=-5.
如图,点A、点B是函数y=的图象上关于坐标原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积是4,则k的值是( )
A.-2 B.±4 C.2 D.±2
如图,已知抛物线y=-x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0).
(1)求抛物线的解析式及其对称轴方程;
(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由;
(3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值;
(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是( )
A. B. C. D.
先化简,再求值:,其中a=+1,b=-1.