题目内容

如图,在△ABC中,∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…∠A2010BC与∠A2010CD的平分线相交于点A2011,得∠A2011,根据题意填空:
(1)如果∠A=80°,则∠A1=______°.
(2)如果∠A=α,则∠A2011=______.(直接用α代数式)

解:(1))∵∠ABC与∠ACD的平分线交于点A1
∴∠A1=180°-∠ACD-∠ACB-∠ABC
=180°-(∠ABC+∠A)-(180°-∠A-∠ABC)-∠ABC
=∠A
=40°;

(2)∵∠ABC与∠ACD的平分线交于点A1
∴∠A1=180°-∠ACD-∠ACB-∠ABC
=180°-(∠ABC+∠A)-(180°-∠A-∠ABC)-∠ABC
=∠A
=
同理可得,∠A2=∠A1=

∴∠A2011=
故答案为:40,
分析:(1)根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知∠A1=∠A;
(2)根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知∠A1=∠A=,∠A2=∠A1=,…,依此类推可知∠A2011的度数.
点评:本题是找规律的题目,主要考查了三角形的外角性质及三角形的内角和定理,同时考查了角平分线的定义.解答的关键是沟通外角和内角的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网