题目内容

如图,点P是反比例函数y=(k<0)图象上的点,PA垂直x轴于点A(-1,0),点C的坐标为(1,0),PC交y轴于点B,连结AB,已知AB=
(1)k的值是   
(2)若M(a,b)是该反比例函数图象上的点,且满足∠MBA<∠ABC,则a的取值范围是   
【答案】分析:(1)设P(-1,t).根据题意知,A(-1,0),B(0,2),C(1,0),由此易求直线BC的解析式y=-2x+2.把点P的坐标代入直线BC的解析式可以求得点P的坐标,由反比例函数图象上点的坐标特征即可求得k的值;
(2)如图,延长线段BC交抛物线于点M,由图可知,当x<a时,∠MBA<∠ABC;过点C作直线AB的对称点C′,连接BC′并延长BC′交双曲线于点M′,当x<a时,∠MBA<∠ABC.
解答:解:(1)如图,PA垂直x轴于点A(-1,0),
∴OA=1,可设P(-1,t).
又∵AB=
∴OB===2,
∴B(0,2).
又∵点C的坐标为(1,0),
∴直线BC的解析式是:y=-2x+2.
∵点P在直线BC上,
∴t=2+2=4
∴点P的坐标是(-1,4),
∴k=-4.
故填:-4;

(2)①如图1,延长线段BC交双曲线于点M.
由(1)知,直线BC的解析式是y=-2x+2,反比例函数的解析式是y=-

解得,(不合题意,舍去).
根据图示知,当0<a<2时,∠MBA<∠ABC;
②如图,过点C作直线AB的对称点C′,连接BC′并延长BC′交双曲线于点M′.
∵A(-1,0),B(0,2),
∴直线AB的解析式为:y=2x+2.
∵C(1,0),
∴C′(-),则易求直线BC′的解析式为:y=x+2,

解得:x=或x=
则根据图示知,当<a<时,∠MBA<∠ABC.
综合①②知,当0<a<2或<a<时,∠MBA<∠ABC.
故答案是:0<a<2或<a<
点评:本题综合考查了待定系数法求一次函数的解析式,反比例函数图象上点的坐标特征以及分式方程组的解法.解答(2)题时,一定要分类讨论,以防漏解.另外,解题的过程中,利用了“数形结合”的数学思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网