题目内容

精英家教网如图,在△ABC中,点D、E分别在边AB、AC上,∠ADE=∠C,且AD=3厘米,BD=5厘米,AC=6厘米,求线段EC的长.
分析:先用两角对应相等,判定△ADE∽△ACB,再根据相似三角形的性质,对应边的比相等求出AE的长,再求出线段EC的长.
解答:解:在△ADE和△ACB中,
∠A=∠A,∠ADE=∠C,
∴△ADE∽△ACB,
AD
AE
=
AC
AB

3
AE
=
6
8

得:AE=4,
∴EC=AC-AE=6-4=2.
所以线段EC的长为2.
点评:本题考查的是相似三角形的判定与性质,根据一个三角形的两角与另一个三角形的两角对应相等,这两个三角形相似,判定两个三角形相似,然后用相似三角形的性质计算求出EC的长.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网