题目内容
有四张不透明卡片,分别写有实数,﹣1,,,除正面的数不同外其余都相同,将它们背面朝上洗匀后,从中任取一张卡片,取到的数是无理数的可能性大小是__.
如图,△ABC中,∠ACB=90°,AC=BC,直线l过点C,BD⊥l,AE⊥l,垂足分别为D、E.
(1)当直线l不与底边AB相交时,求证:ED=AE+BD;
(2)如图2,将直线l绕点C顺时针旋转,使l与底边AB相交时,请你探究ED、AE、BD三者之间的数量关系.
如图,在△ABC中,OB、OC分别是∠B和∠C的角平分线,过点O作EF∥BC,交AB、AC于点E、F,如果AB=10,AC=8,那么△AEF的周长为_______.
如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.
(1)求证:AB=AC;
(2)求证:DE为⊙O的切线.
如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于另一点Q,如果QP=QO,则∠OCP= .
在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:①当0<x<2时,N=y1;②N随x的增大而增大的取值范围是x<0;③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;④若N=2,则x=2﹣或x=1.其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
ABCD中,E是CD边上一点,
(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是 ,∠AFB=∠
(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ;
(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2吗?
要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为( )
A. x(x+1)=15 B. x(x﹣1)=15 C. x(x+1)=15 D. x(x﹣1)=15
倒数等于本身的数是___________.