题目内容
如图是由棱长相等的小正方体组成的某几何体的主视图和俯视图,则该几何体的左视图不可能是( )
A. B. C. D.
[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[﹣2.1]=﹣3.则下列结论:
①[﹣x]=﹣[x];
②若[x]=n,则x的取值范围是n≤x<n+1;
③当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2;
④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一个解.
其中正确的结论有_____(写出所有正确结论的序号).
若 ,b=(﹣1)﹣1,,则a、b、c从小到大的排列是_____<_____<_____.
如图,反比例函数y=(k≠0)的图象与一次函数y=﹣x+1的图象交于A(﹣2,m),B(n,﹣1)两点.
(1)求反比例函数的解析式;
(2)连接OA,OB,求△AOB的面积.
勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理,但远在毕达哥拉斯出生之前,这一定理早已被人们所利用,世界上各个文明古国都对勾股定理的发现和研究作出过贡献(希腊、中国、埃及、巴比伦、印度等),特别是定理的证明,据说有400余种方法.其中在《几何原本》中有一种证明勾股定理的方法:如图所示,作CG⊥FH,垂足为G,交AB于点P,延长FA交DE于点S,然后将正方形ACED、正方形BCNM作等面积变形,得S正方形ACED=S?ACQS,S正方形BCNM=S?BCQT,这样就可以完成勾股定理的证明.对于该证明过程,下列结论错误的是( )
A. △ADS≌△ACB B. S?ACQS=S矩形APGF
C. S?CBTQ=S矩形PBHG D. SE=BC
如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.
(1)①∠BCE与∠CDF的大小关系是_______________;
②证明:GF⊥BF;
(2)探究G落在边DC的什么位置时,BF=BC,请说明理由.
(1)计算:
(2)解不等式组: 并把它的解集在数轴上表示出来.
下列各式化简后的结果为3 的是( )
若一个三角形的三边长为3、4、x,则使此三角形是直角三角形的x的值是__________.