题目内容

12.已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.
(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BD⊥CE.
(2)如图2,当点D在线段BC延长线上时,探究AD、BD、CD三条线段之间的数量关系,写出结论并说明理由;(3)若BD=$\sqrt{3}$CD,直接写出∠BAD的度数.

分析 (1)根据等腰直角三角形的性质可得∠ABC=∠ACB=45°,再根据旋转性质可得AD=AE,∠DAE=90°,然后利用同角的余角相等求出∠BAD=∠CAE,然后利用“边角边”证明△BAD和△CEF全等,从而得证;
(2)将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.与(1)同理可得CE=BD,CE⊥BD,根据勾股定理即可求得2AD2=BD2+CD2
(3)分两种情况分别讨论即可求得.

解答 (1)证明:如图1,∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵∠DAE=90°,
∴∠DAE=∠CAE+∠DAC=90°,
∵∠BAC=∠BAD+∠DAC=90°,
∴∠BAD=∠CAE,
在△BAD和△CAE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△BAD≌△CAE(SAS),
∴BD=CE,∠ACE=∠ABC=45°.
∴∠BCE=∠ACB+∠ACE=90°,
∴BD⊥CE;
(2)2AD2=BD2+CD2
理由:如图2,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE、DE.
与(1)同理可证CE=BD,CE⊥BD,
∵∠EAD=90°AE=AD,
∴ED=$\sqrt{2}$AD,
在RT△ECD中,ED2=CE2+CD2
∴2AD2=BD2+CD2
(3)如图3,①当D在BC边上时,将线段AD1绕点A顺时针方向旋转90°得到线段AE,连接BE,
与(1)同理可证△ABE≌△ACD1
∴BE=CD1,BE⊥BC,
∵BD=$\sqrt{3}$CD,
∴BD1=$\sqrt{3}$BE,
∴tan∠BD1E=$\frac{BE}{B{D}_{1}}$=$\frac{\sqrt{3}}{3}$,
∴∠BD1E=30°,
∵∠EAD1=∠EBD1=90°,
∴四边形A、D1、B、E四点共圆,
∴∠EAB=∠BD1E=30°,
∴∠BAD1=90°-30°=60°;
②当D在BC延长线上时,将线段AD绕点A逆时针方向旋转90°得到线段AF,连接CF.
同理可证:∠CFD2=30°,
∵∠FAD2=∠FCD2=90°,
∴四边形A、F、D2、C四点共圆,
∴∠CAD2=∠CFD2=30°,
∴∠BAD2=90°+30°=120°,
综上,∠BAD的度数为60°或120°.

点评 本题考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质,勾股定理的应用,四点共圆的判定,圆周角定理等,通过旋转得出全等三角形是本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网