题目内容
【题目】如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积为______。
![]()
【答案】36
【解析】
连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.
连接AC,如图所示:
![]()
∵∠B=90°,
∴△ABC为直角三角形,
又∵AB=3,BC=4,
∴根据勾股定理得:AC=
=5,
又∵CD=12,AD=13,
∴AD
=13
=169,CD
+AC
=12
+5
=144+25=169,
∴CD
+AC
=AD
,
∴△ACD为直角三角形,∠ACD=90°,
则S四边形ABCD=S△ABC+S△ACD=
ABBC+
ACCD=
×3×4+
×5×12=36,
故四边形ABCD的面积是36
练习册系列答案
相关题目