题目内容
如图所示的工件,其俯视图是( )
A. B. C. D.
已知反比例函数(为常数).
(1)若点和点是该反比例函数图象上的两点,试利用反比例函数的性质比较和的大小;
(2)设点()是其图象上的一点,过点作轴于点,若,(为坐标原点),求的值,并直接写出不等式的解集.
下面几何体的主视图为( )
A. B. C. D.
如图,在平面直角坐标系中,每个小方格的边长均为1.与是以原点为位似中心的位似图形,且相似比为,点都在格点上,则点的坐标是 .
如图,□中,,,以为直径的⊙交于点,则弧的长为( )
A. B. C. D.
阅读材料:
在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=.
例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.
【解析】由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,
∴点P0(0,0)到直线4x+3y﹣3=0的距离为d==.
根据以上材料,解决下列问题:
问题1:点P1(3,4)到直线y=﹣x+的距离为 ;
问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;
问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.
为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:
183 191 169 190 177
则在该时间段中,通过这个路口的汽车数量的平均数是 .
如图,已知⊙O的直径AB=12,弦AC=10,D是
的中点,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)求AE的长.
生物学家发现了一种病毒,其长度约为,数据用科学记数法表示正确的是( )