题目内容
如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则( )
A. ∠1=∠EFD B. BE=EC C. BF=DF=CD D. FD∥BC
如图,矩形ABCD和菱形EFGH均以直线HF、EG为对称轴,边EH分别交AB,AD于点M,N,若M,N分别为EH的三等分点,且菱形EFGH的面积与矩形ABCD的面积之差为S,则菱形EFGH的面积等于( )
A. 7S B. 8S C. 9S D. 10S
先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+,y=2﹣.
(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,EF分别是 BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.
小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;
探索延伸:
(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.
如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是_____________
如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是( )
A. PC=PD B. ∠CPD=∠DOP C. ∠CPO=∠DPO D. OC=OD
我市某中学对学校倡导的“压岁钱捐款活动”进行抽样调查,得到一组学生捐款的数据,
下图是根据这组数据绘制的统计图,图中从左到右长方形的高度之比为2:4:5:8:6.又知此次调查中捐款20元和25元的学生一共28人.
(1)他们一共调查了多少学生?
(2)写出这组数据的中位数、众数;
(3)若该校共有2000名学生,估计全校学生大约捐款多少元?
关于x的方程mx2+(2m+1)x+m = 0,有实数根,则m的取值范围是( )
A. m>且m≠0 B. m≥ C. m≥且m≠0 D. 以上答案都不对
已知a=3.1×10﹣4,b=5.2×10﹣8,判断下列关于a﹣b之值的叙述何者正确?( )
A. 比1大 B. 介于0、1之间 C. 介于﹣1、0之间 D. 比﹣1小