题目内容
(1)甲种铅笔每支0.3元,乙种每支铅笔0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?
(2)某车间有15名工人,每人每天可加工甲种零件4个或乙种零件3个.在这15名工人中,由一部分人加工甲种零件,其余人加工乙种零件.已知一个甲零件需要配3个乙零件,为了使生产的甲零件和乙零件刚好配套,求这一天应安排几个工人生产甲零件.
(2)某车间有15名工人,每人每天可加工甲种零件4个或乙种零件3个.在这15名工人中,由一部分人加工甲种零件,其余人加工乙种零件.已知一个甲零件需要配3个乙零件,为了使生产的甲零件和乙零件刚好配套,求这一天应安排几个工人生产甲零件.
分析:(1)可以设甲种铅笔买了x支,根据9元钱买了两种铅笔共20支可得方程,求方程的解即可;
(2)由于1个甲种零件和3个乙种零件配成一套,所以需要乙的零件个数一定多.那么乙的零件个数要和甲的零件个数刚好配套,等量关系为:3×甲的零件个数=乙的零件个数.
(2)由于1个甲种零件和3个乙种零件配成一套,所以需要乙的零件个数一定多.那么乙的零件个数要和甲的零件个数刚好配套,等量关系为:3×甲的零件个数=乙的零件个数.
解答:解:(1)设甲种铅笔买了x支,则乙种铅笔买(20-x)支.
由题意,得0.3x+0.6(20-x)=9,
解得,x=10,则20-x=10,
答:两种铅笔各买了10支;
(2)设分配x人生产甲零件,则有(15-x)人生产乙零件,
根据题意可列方程:3×4x=3(15-x),
解得:x=3.
则15-x=12.
答:分配3人生产甲零件,12人生产乙零件.
由题意,得0.3x+0.6(20-x)=9,
解得,x=10,则20-x=10,
答:两种铅笔各买了10支;
(2)设分配x人生产甲零件,则有(15-x)人生产乙零件,
根据题意可列方程:3×4x=3(15-x),
解得:x=3.
则15-x=12.
答:分配3人生产甲零件,12人生产乙零件.
点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
练习册系列答案
相关题目