题目内容
分解因式: =____________
为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?
(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?
分解因式:(a-b)2-4b2= _______________________
如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B。P为线段AB上一动点,作直线PC⊥PO,交直线x=1于点C。过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N。
(1)当点C在第一象限时,求证:△OPM≌△PCN;
(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m间的函数关系式,并写出自变量m的取值范围;
(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰直角三角形的点P的坐标;如果不可能,请说明理由。
如图,在10×10正方形网格中,每个小正方形的边长均为1个单位.将△ABC向下平移4个单位,得到,再把绕点顺时针旋转90°,得到,请你画出和.
如图所示的图案中是轴对称图形的是( )
A. B. C. D.
如果与互为倒数,则等于( )
如图,已知抛物线y= (x+2)(x-4)与x轴交于点A、B(点A位于点B的左侧),与y轴交于点C.CD∥x轴,交抛物线于点D,M为抛物线的顶点.
(l)求点A、B、C的坐标;
(2)设动点N( -2,n),求使MN+BN的值最小时n的值:
(3)P是抛物线上一点,请你探究:是否存在点P,使以P、A、B为顶点的三角形与△ABD相似(△PAB与△ABD不重合)? 若存在,写出点P的坐标;若不存在,请说明理由.
在我国南海某海域探明可燃冰储量约有194亿立方米,这个数据194亿立方米可以用科学记数法表示为__________立方米.