题目内容
如果将长度为a-2、a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a的取值范围是________________
小东从A地出发以某一速度向B地走去,同时小明从B地出发以另一速度向A地走去,y1,y2分别表示小东、小明离B地的距离y(km)与所用时间x(h)的关系,如图所示,根据图象提供的信息,回答下列问题:
(1)试用文字说明交点P所表示的实际意义;
(2)求y1与x的函数关系式;
(3)求A,B两地之间的距离及小明到达A地所需的时间.
解方程p=,正确的是 ( )
A. p= B. p= C. p=12 D. p=
如图,已知直线l1∥l2∥l3,直线AC和DF分别与l1,l2,l3相交于点A,B,C和点D,E,F,如果AB=1,EF=3,那么下列各式中,正确的是( )
A. BC∶DE=3 B. BC∶DE=1∶3
C. BC·DE=3 D. BC·DE=
已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系: ;
(2)仔细观察,在图2中“8字形”的个数: 个;
(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.利用(1)的结论,试求∠P的度数;
(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)
如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D、E、F,
则线段___是△ABC中AC边上的高.
如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S△DGF的值为( )
A. 4cm2 B. 6cm2 C. 8cm2 D. 9cm2
有一个质地均匀的骰子,6个面上分别写有1,1,2,2,3,3这6个数字.连续投掷两次,第一次向上一面的数字作为十位数字,第二次向上一面的数字作为个位数字,这个两位数是奇数的概率为____________.
某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润为10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.
(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属于第几档次产品?
(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?