题目内容

已知一个正多边形的一个外角等于一个内角的数学公式,求这个正多边形的边数及其所有对角线的条数.

解:设此正多边形为正n边形.
∵正多边形的一个外角等于一个内角的
∴此正多边形的外角和等于其内角和的
∴360°=(n-2)•180°×
解得n=5.
∴此正多边形所有的对线条数为:n(n-3)=×5×(5-3)=5.
答:正多边形的边数为5,其所有对角线有五条.
分析:多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,从而可根据一个正多边形的一个外角等于一个内角的列方程,求出正多边形的边数.然后根据n边形共有条对角线,得出此正多边形的所有对角线的条数.
点评:本题考查正多边形的内角和与外角和及多边形的对角线公式.关键是记住内角和的公式与外角和的特征.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网