题目内容
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b),(m≠1的实数).
其中正确的结论有 (填序号)
【答案】分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:解:①图象开口向下,与y轴交于正半轴,对称轴为x=1,能得到:a<0,c>0,-
=1,
∴b=-2a>0,
∴abc<0,
所以错误;
②当x=-1时,由图象知y<0,
把x=-1代入解析式得:a-b+c<0,
∴b>a+c,
∴②错误;
③图象开口向下,与y轴交于正半轴,对称轴为x=1,
能得到:a<0,c>0,-
=1,
所以b=-2a,
所以4a+2b+c=4a-4a+c>0.
∴③正确;
④∵由①②知b=-2a且b>a+c,
∴2c<3b,④正确;
⑤∵x=1时,y=a+b+c(最大值),
x=m时,y=am2+bm+c,
∵m≠1的实数,
∴a+b+c>am2+bm+c,
∴a+b>m(am+b)成立.
∴⑤正确.
故正确结论的序号是③,④,⑤.
点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
解答:解:①图象开口向下,与y轴交于正半轴,对称轴为x=1,能得到:a<0,c>0,-
∴b=-2a>0,
∴abc<0,
所以错误;
②当x=-1时,由图象知y<0,
把x=-1代入解析式得:a-b+c<0,
∴b>a+c,
∴②错误;
③图象开口向下,与y轴交于正半轴,对称轴为x=1,
能得到:a<0,c>0,-
所以b=-2a,
所以4a+2b+c=4a-4a+c>0.
∴③正确;
④∵由①②知b=-2a且b>a+c,
∴2c<3b,④正确;
⑤∵x=1时,y=a+b+c(最大值),
x=m时,y=am2+bm+c,
∵m≠1的实数,
∴a+b+c>am2+bm+c,
∴a+b>m(am+b)成立.
∴⑤正确.
故正确结论的序号是③,④,⑤.
点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
练习册系列答案
相关题目
已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
| x | -0.1 | -0.2 | -0.3 | -0.4 |
| y=ax2+bx+c | -0.58 | -0.12 | 0.38 | 0.92 |