题目内容

如图,正方形ABCD,点E在CD上,点F在AD上,BG⊥EF于G,且BG=AD,连BF、BE,
①求∠EBF度数;
②延长AG交BE的延长线于H点,求数学公式的值;
③若数学公式,且正方形边长为3数学公式,则BH=________.

9
分析:(1)由正方形的性质和已知条件可得到∠EBF=∠ABC,又因为∠ABC是正方形的一个内角,所以∠ABC=90°,进而求出∠EBF度数;
(2)设BF交AG于点Q,通过证明△ABQ∽△DBH,由相似三角形的性质即可得到==,进而得到=
(3)设BE交CG于点M,由已知条件和勾股定理可求出BE,由射影定理可求出BM的长,由△ABQ∽△DBH,得BH=BQ=BM=9
解答:(1)∵正方形ABCD,点E在CD上,点F在AD上,BG⊥EF于G,且BG=AD,
∴BG=BC=AD=BA,∠BAF=∠BGF=∠BCE=90°
∴BF平分∠AFG,BE平分∠GEC,
∴BF平分∠ABG,BE平分∠GBC.
∴∠ABF=∠FBG,∠GBE=∠EBC,
∴∠EBF=∠ABC=45°;

(2)设BF交AG于点Q,连接BD,DH,
∵∠ABD=45°,
∴∠ABF+∠FBD=45°,
∵∠EBF=45°,
∴∠DBH+∠FBD=45°,
∴∠ABF=∠DBH,
∵∠AQB=∠DHB=90°,
∴△ABQ∽△DBH,
==
=

(3)设BE交CG于点M,
,DC=3
∴CE=,DE=2
∴BE==10,
∵BC2=BM•BE,
∴90=BM×10,
∴BM=9,
由△ABQ∽△DBH,
得BH=BQ=BM=9
故答案为:9
点评:此题主要考查了正方形的性质、相似三角形的判定与性质、角平分线的性质、垂直平分线的性质,题目的综合性很强,难度不小.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网