题目内容
已知:如图①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:
(1)当t为何值时,PQ∥BC;
(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;
(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
![]()
考点:
相似形综合题.
专题:
压轴题.
分析:
(1)当PQ∥BC时,我们可得出三角形APQ和三角形ABC相似,那么可得出关于AP,AB,AQ,AC的比例关系,我们观察这四条线段,已知的有AC,根据P,Q的速度,可以用时间t表示出AQ,BP的长,而AB可以用勾股定理求出,这样也就可以表示出AP,那么将这些数值代入比例关系式中,即可得出t的值.
(2)求三角形APQ的面积就要先确定底边和高的值,底边AQ可以根据Q的速度和时间t表示出来.关键是高,可以用AP和∠A的正弦值来求.AP的长可以用AB﹣BP求得,而sinA就是BC:AB的值,因此表示出AQ和AQ边上的高后,就可以得出y与t的函数关系式.
(3)如果将三角形ABC的周长和面积平分,那么AP+AQ=BP+BC+CQ,那么可以用t表示出CQ,AQ,AP,BP的长,那么可以求出此时t的值,我们可将t的值代入(2)的面积与t的关系式中,求出此时面积是多少,然后看看面积是否是三角形ABC面积的一半,从而判断出是否存在这一时刻.
(4)我们可通过构建相似三角形来求解.过点P作PM⊥AC于M,PN⊥BC于N,那么PNCM就是个矩形,解题思路:通过三角形BPN和三角形ABC相似,得出关于BP,PN,AB,AC的比例关系,即可用t表示出PN的长,也就表示出了MC的长,要想使四边形PQP'C是菱形,PQ=PC,根据等腰三角形三线合一的特点,QM=MC,这样有用t表示出的AQ,QM,MC三条线段和AC的长,就可以根据AC=AQ+QM+MC来求出t的值.求出了t就可以得出QM,CM和PM的长,也就能求出菱形的边长了.
解答:
解:(1)在Rt△ABC中,AB=
,
由题意知:AP=5﹣t,AQ=2t,若PQ∥BC,则△APQ∽△ABC,
∴
=
,∴
=
,
∴t=
.所以当t=
时,PQ∥BC.(2)过点P作PH⊥AC于H.
∵△APH∽△ABC,
∴
=
,
∴
=
,
∴PH=3﹣
t,
∴y=
×AQ×PH=
×2t×(3﹣
t)=﹣
t2+3t.(3)若PQ把△ABC周长平分,则AP+AQ=BP+BC+CQ.
∴(5﹣t)+2t=t+3+(4﹣2t),解得t=1.
若PQ把△ABC面积平分,则S△APQ=
S△ABC,即﹣
+3t=3.
∵t=1代入上面方程不成立,
∴不存在这一时刻t,使线段PQ把Rt△ACB的周长和面积同时平分.(4)过点P作PM⊥AC于M,PN⊥BC于N,
若四边形PQP'C是菱形,那么PQ=PC.
∵PM⊥AC于M,
∴QM=CM.
∵PN⊥BC于N,易知△PBN∽△ABC.
∴
=
,∴
=
,
∴PN=
,
∴QM=CM=
,
∴
t+
t+2t=4,解得:t=
.
∴当t=
s时,四边形PQP'C是菱形.
此时PM=3﹣
t=
cm,CM=
t=
cm,
在Rt△PMC中,PC=
=
=
cm,
∴菱形PQP′C边长为
cm.
![]()
![]()
点评:
本题图形结合的动态题,是近几年考试热点,同时考查三角形相似知识,是一道很好的综合题.本题亮点是巧妙结合图形综合考查不同知识点.