题目内容
分解因式: .
(本小题满分8分)已知抛物线C1 :y=-x2+2mx+1(m为常数,且m>0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB.
(1)当m=1时,判定ΔABC的形状,并说明理由;
(2)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由.
某校安排三辆车,组织九年级学生去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为_________.
(本题满分10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度数;
(2)求证:AE是⊙O的切线;
(3)当BC=4时,求劣弧AC的长.
已知点A(,0)是抛物线与轴的一个交点,则代数式的值是 .
已知一组数据1,4,5,2,3,则这组数据的平均数是( )
A.2 B.3 C.4 D.5
(本题满分8分)动手实验:利用矩形纸片(图1)剪出一个正六边形纸片;利用这个正六边形纸片做一个如图(2)无盖的正六棱柱(棱柱底面为正六边形);
(1)做一个这样的正六棱柱所需最小的矩形纸片的长与宽的比为多少?
(2)在(1)的前提下,当矩形的长为2时,要使无盖正六棱柱侧面积最大,正六棱柱的高为多少?并求此时矩形纸片的利用率?(矩形纸片的利用率=无盖正六棱柱的表面积/矩形纸片的面积)
如图1,在△ABC中,∠ACB=90°,∠CAB=30°, △ABD是等边三角形,E是AB的中点,连结CE并延长交AD于F,如图2,现将四边形ACBD折叠,使D与C重合,HK为折痕,则sin∠ACH的值为( )
A. B. C. D.
(本题满分10分)已知:如图,矩形ABCD中,CD=2,AD=3,以C点为圆心,作一个动圆,与线段AD交于点P(P和A、D不重合),过P作⊙C的切线交线段AB于F点.
(1)求证:△CDP∽△PAF;
(2)设DP=x,AF=y,求y关于x的函数关系式,及自变量x的取值范围;
(3)是否存在这样的点P,使△APF沿PF翻折后,点A落在BC上,请说明理由.