题目内容
30°
30°
.分析:由梯形ABCD中,AD∥BC,DC⊥BC,∠A′BC=15°,利用三角形外角的性质,可求得∠DA′B的度数,由折叠的性质,可得:∠A=∠DA′B=105°,∠ABD=∠A′BD,继而求得∠A′BD的度数.
解答:解:∵梯形ABCD中,AD∥BC,DC⊥BC,
∴∠C=90°,
∵∠A′BC=15°,
∴∠DA′B=∠A′BC+∠C=15°+90°=105°,
由折叠的性质可得:∠A=∠DA′B=105°,∠ABD=∠A′BD,
∵AD∥BC,
∴∠ABC=180°-∠A=75°,
∴∠A′BD=
=30°.
故答案为:30°.
∴∠C=90°,
∵∠A′BC=15°,
∴∠DA′B=∠A′BC+∠C=15°+90°=105°,
由折叠的性质可得:∠A=∠DA′B=105°,∠ABD=∠A′BD,
∵AD∥BC,
∴∠ABC=180°-∠A=75°,
∴∠A′BD=
| ∠ABC-∠A′BC |
| 2 |
故答案为:30°.
点评:此题考查了折叠的性质、梯形的性质以及三角形的外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.
练习册系列答案
相关题目