题目内容

已知∠AOB=30°,P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,则△OP1P2


  1. A.
    直角三角形
  2. B.
    等腰直角三角形
  3. C.
    钝角三角形
  4. D.
    等边三角形
D
分析:根据轴对称的性质,结合等边三角形的判定求解.
解答:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2
∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,
∴故△OP1P2是等边三角形.
故选D.
点评:本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网