题目内容

如图,点O是△ABC内一点,∠A=80°,∠ABO=15°,∠ACO=40°,则∠BOC等于(  )
分析:延长BO交AC于E,根据三角形内角与外角的性质可得∠1=∠A+∠ABO,∠BOC=∠ACO+∠1,再代入相应数值进行计算即可.
解答:解:延长BO交AC于E,
∵∠A=80°,∠ABO=15°,
∴∠1=80°+15°=95°,
∵∠ACO=40°,
∴∠BOC=∠1+∠ACO=95°+40°=135°.
故选:C.
点评:此题主要考查了三角形内角与外角的关系,关键是掌握三角形内角与外角的关系定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网