题目内容


如图,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°

(1)求∠DCA的度数;

(2)求∠DCE的度数.

 


【考点】平行线的判定与性质.

【分析】(1)利用角平分线的定义可以求得∠DAB的度数,再依据∠DAB+∠D=180°求得∠D的度数,在△ACD中利用三角形的内角和定理.即可求得∠DCA的度数;

(2)根据(1)可以证得:AB∥DC,利用平行线的性质定理即可求解.

【解答】解:(1)∵AC平分∠DAB,

∴∠CAB=∠DAC=25°,

∴∠DAB=50°,

∵∠DAB+∠D=180°,

∴∠D=180°﹣50°=130°,

∵△ACD中,∠D+∠DAC+∠DCA=180°,

∴∠DCA=180°﹣130°﹣25°=25°.

(2)∵∠DAC=25°,∠DCA=25°,

∴∠DAC=∠DCA,

∴AB∥DC,

∴∠DCE=∠B=95°.

 

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网