题目内容
如图,在△ABC中,AB=AC,∠BAC=108°,若AD、AE三等分∠BAC,则图中等腰三角形有
- A.3个
- B.4个
- C.5个
- D.6个
D
分析:根据AB=AC,∠BAC=108°,易求∠B=∠C=36°,且知道△ABC是等腰三角形,再结合AD、AE三等分∠BAC,又易求∠BAD=∠DAE=∠EAC=36°,进而可求∠DAC=∠BAE=72°,再结合三角形内角和定理可求∠AEB=∠ADC=72°,从而可判断△ABE、△ADC、△ABD、△ADE、△AEC是等腰三角形.
解答:
∵AB=AC,∠BAC=108°,
∴∠B=∠C=36°,△ABC是等腰三角形,
∵∠BAC=108°,AD、AE三等分∠BAC,
∴∠BAD=∠DAE=∠EAC=36°,
∴∠DAC=∠BAE=72°,
∴∠AEB=∠ADC=72°,
∴BD=AD=AE=CE,AB=BE=AC=CD,
∴△ABE、△ADC、△ABD、△ADE、△AEC是等腰三角形,
∴一共有6个等腰三角形.
故选D.
点评:本题考查了等腰三角形的判定和性质,解题的关键是求出每个角的度数,根据等角对等边即可判断.
分析:根据AB=AC,∠BAC=108°,易求∠B=∠C=36°,且知道△ABC是等腰三角形,再结合AD、AE三等分∠BAC,又易求∠BAD=∠DAE=∠EAC=36°,进而可求∠DAC=∠BAE=72°,再结合三角形内角和定理可求∠AEB=∠ADC=72°,从而可判断△ABE、△ADC、△ABD、△ADE、△AEC是等腰三角形.
解答:
∴∠B=∠C=36°,△ABC是等腰三角形,
∵∠BAC=108°,AD、AE三等分∠BAC,
∴∠BAD=∠DAE=∠EAC=36°,
∴∠DAC=∠BAE=72°,
∴∠AEB=∠ADC=72°,
∴BD=AD=AE=CE,AB=BE=AC=CD,
∴△ABE、△ADC、△ABD、△ADE、△AEC是等腰三角形,
∴一共有6个等腰三角形.
故选D.
点评:本题考查了等腰三角形的判定和性质,解题的关键是求出每个角的度数,根据等角对等边即可判断.
练习册系列答案
相关题目