题目内容

如图,PA是⊙O的切线,PA=2
3
,PB=2,⊙O的半径为
2
2
2
2
分析:连结OA,根据切线的性质得OA⊥PA,然后利用勾股定理可计算出OA.
解答:解:连结OA,如图,
∵PA是⊙O的切线,
∴OA⊥PA,
在Rt△OBP中,PO=2
3
,PA=2,
∴OA=
PO2-PA2
=2
2

故答案为2
2
点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点且垂直于切线的直线必经过圆心.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网