题目内容
【题目】如图,已知
内接于
,
是直径,点
在
上,
,过点
作
,垂足为
,连接
交
边于点
.![]()
(1)求证:
∽
;
(2)求证:
;
(3)连接
,设
的面积为
,四边形
的面积为
,若
,求
的值.
【答案】
(1)
证明:∵AB是圆O的直径,
∴∠ACB=90°,
∵DE⊥AB,
∴∠DEO=90°,
∴∠DEO=∠ACB,
∵OD//BC,
∴∠DOE=∠ABC,
∴△DOE~△ABC,
(2)
证明:∵△DOE~△ABC,
∴∠ODE=∠A,
∵∠A和∠BDC是弧BC所对的圆周角,
∴∠A=∠BDC,
∴∠ODE=∠BDC,
∴∠ODF=∠BDE。
(3)
解:因为△DOE~△ABC ,
所以
,
即
=4
=4![]()
因为OA=OB,
所以
=
,即
=2
,
因为
=
,S2=
+
+
=2S1+S1+
,
所以
=
,
所以BE=
OE,即OE=
OB=
OD,
所以sinA=sin∠ODE=
=![]()
【解析】(1)易证∠DEO=∠ACB=90°和∠DOE=∠ABC,根据“有两对角相等的两个三角形相似”判定△DOE~△ABC;
(2)由△DOE~△ABC,可得∠ODE=∠A,由∠A和∠BDC是弧BC所对的圆周角,则∠A=∠BDC,从而通过角的等量代换即可证得;
(3)由∠ODE=∠A,可得sinA=sin∠ODE=
=
;而由△DOE~△ABC ,可得
, 即
=4
=4![]()
=
, 即
=2
,又因为
=
,S2=
+
+
=2S1+S1+
,则可得
=
, 可求得OE与OB的比值.
【考点精析】认真审题,首先需要了解圆周角定理(顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半),还要掌握相似三角形的性质(对应角相等,对应边成比例的两个三角形叫做相似三角形)的相关知识才是答题的关键.