题目内容
校园歌手大赛中甲、乙、丙3名学生进入了决赛,组委会决定通过抽签确定表演顺序.
(1)求甲第二个出场的概率;
(2)求甲比乙先出场的概率.
实数, ,-8,3, , 中的无理数是__________________.
一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为( )
A. y=10x+30 B. y=40x C. y=10+30x D. y=20x
如图,在平行四边形ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF是平行四边形的有( )
A. 0个 B. 1个 C. 2个 D. 3个
如图,函数 (x<0)与y=ax+b的图象交于点A(-1,n)和B(-2,1),直线y=mx与 (x<0)的图象交于点P,与y=-x+1的图象交于点Q,定义∠PAQ为这个函数的“函数角”.
(1)求k,a,b的值;
(2)当m=-时,求这个函数的“函数角”的度数.
(3)若射线AP与x轴交于点N(a,0),当这个函数的“函数角”的度数不小于120°时,直接写出m的取值范围.
如图,直角三角形纸片ABC,AC边长为10cm,现从下往上依次裁剪宽为4cm的矩形纸条,若剪得第二张矩形纸条恰好是正方形,那么BC的长度是______cm.
如图1,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图2所示.以下分析错误的是( )
A. AB=2 B. AC=4 C. ∠ABC=90° D. tan∠ACB=
(本小题12分)如图1,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
(1)试用含t的式子表示AE、AD的长;
(2)如图2,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由;
(3)连接DE,当t为何值时,△DEF为直角三角形?
(4)如图3,连接DE,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形AEA′D为菱形?