题目内容

如图,矩形纸片ABCD,AB=2,点E在BC上,且AE=EC,若将纸片沿AE折叠,点B恰好落在AC上,则AC的长是________.

4
分析:根据折叠的性质及等边对等角的性质,可得到∠BAE=∠EAC=∠ECA,根据三角形内角和定理即可求得∠ECA的度数,再根据直角三角形的性质不难求得AC的长.
解答:∵AE=EC
∴∠EAC=∠ECA
∵将纸片沿AE折叠,点B恰好落在AC上
∴∠BAE=∠EAC
∴∠BAE=∠EAC=∠ECA
∵∠B+∠ECA+∠CAB=180°
∴∠ECA=30°
∵AB=2
∴AC=2AB=4.
故填4.
点评:本题考查等腰三角形的性质及直角三角形性质和翻折变换等知识;对于翻折变换问题,找准对应的相等关系是正确解答的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网