题目内容

如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.
(1)在图1中以格点为顶点画一个面积为5的正方形;
(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为3,4,5;
(3)在图3中以格点为顶点画一个三角形,使三角形三边长分别为2,数学公式数学公式

解:如图所示:

分析:(1)由正方形的面积为5,可知:正方形的变长为,1×2的长方形方格的对角线长是,从而作出面积为5的正方形;
(2)根据勾股定理可知:以3,4,5为三边所构成的三角形为直角三角形,故以3和4为两直角边作直角三角形即可;
(3)根据1×2的对角线为,3×2的对角线为,可作出变长为2,的三角形.
点评:本题主要考查勾股定理在作图中的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网