题目内容

精英家教网已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.求证:EG=CG.
分析:根据直角三角形斜边上的中线等于斜边的一半,EG=
1
2
DF,CG=
1
2
DF,所以EG=CG.
解答:证明:∵EF⊥BD,
∴△DEF为直角三角形,
∵G为DF中点,
∴EG=
1
2
DF,(直角三角形斜边上的中线等于斜边的一半),
在正方形ABCD中,∠BCD=90°,
又G为DF中点,
∴CG=
1
2
DF,(直角三角形斜边上的中线等于斜边的一半),
∴EG=CG.
点评:本题主要考查直角三角形斜边上的中线等于斜边的一半的性质,熟练掌握性质是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网