题目内容
【题目】如图,在ABCD中,连接对角线BD,BE平分∠ABD交AD于点E,DF平分∠BDC交BC于点F.
(1)求证:△AEB≌△CFD;
(2)若BD=BA,试判断四边形DEBF的形状,并加以证明.
![]()
【答案】(1)证明见解析;(2)四边形DEBF是矩形;理由见解析.
【解析】分析:(1)由平行四边形的性质得出AD∥BC,CD∥BA,∠A=∠C,AB=CD,得出∠ABD=∠BDC,由角平分线的定义证出∠DBE=∠FDB,由ASA证明△AEB≌△CFD即可;(2)先证明四边形DEBF是平行四边形,再根据等腰三角形的“三线合一”的性质推知BE⊥AD,然后由“有一内角为直角的平行四边形是矩形”证得四边形DEBF是矩形即可.
本题解析:(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,CD∥BA,∠A=∠C,AB=CD,
∴∠ABD=∠BDC(两直线平行,内错角相等).
又∵BE平分∠ABD,DF平分∠BDC,
∴∠ABE=∠DBE=
∠ABD,∠CDF=∠BDF=
∠BDC,
∴∠DBE=∠FDB=∠DBE=∠BDF(等量代换),
在△AEB和△CFD中,
,
∴△AEB≌△CFD(ASA);
(2)解:四边形DEBF是矩形;理由如下:
由(1)知:∠DBE=∠BDF,
∴BE∥DF,
∵DE∥BF,
∴四边形EBFD是平行四边形.
∵BD=BA,BE是∠ABD的平分线,
∴BE⊥AD,
∴∠DEB=90°,
∴四边形DEBF是矩形(有一内角为直角的平行四边形是矩形).
练习册系列答案
相关题目