如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.

(1)求证:DE是⊙O的切线;

(2)求证:BD2=AB•CE.

【答案】(1)证明见解析;(2)证明见解析.

【解析】

试题分析:(1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;

(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出,从而求得BD•CD=AB•CE,由BD=AD,即可求得BD2=AB•CE.

试题解析:(1)证明:连接OD,如图,

∵AB为⊙0的直径,

∴∠ADB=90°,

∴AD⊥BC,

∵AB=AC,

∴AD平分BC,即DB=DC,

∵OA=OB,

∴OD为△ABC的中位线,

∴OD∥AC,

∵DE⊥AC,

∴OD⊥DE,

∴DE是⊙0的切线;

(2)证明:∵∠B=∠C,∠CED=∠BDA=90°,

∴△DEC∽△ADB,

∴BD•CD=AB•CE,

∵BD=AD,

∴BD2=AB•CE.

考点:1.切线的判定;2.相似三角形的判定与性质.

【题型】解答题
【适用】一般
【标题】2015届山东省威海市乳山市中考一模数学试卷(带解析)
【关键字标签】
【结束】
 

如图1,将一个直角三角板的直角顶点P放在正方形ABCD的对角线BD上滑动,并使其一条直角边始终经过点A,另一条直角边与BC相交于点E.

(1)求证:PA=PE;

(2)若将(1)中的正方形变为矩形,其余条件不变(如图2),且AD=10,DC=8,求AP:PE;

(3)在(2)的条件下,当P滑动到BD的延长线上时(如图3),请你直接写出AP:PE的比值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网