题目内容

在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.
求证:CE⊥BE.

证明:延长CE交BA的延长线于点G,即交点为G,
∵E是AD中点,
∴AE=ED,
∵AB∥CD,
∴∠CDE=∠GAE,∠DCE=∠AGE,
∴△CED≌△GEA,
∴CE=GE,AG=DC,
∴GB=BC=3,
∴EB⊥EC.
分析:延长CE交BA的延长线于点G,那么可得△CED≌△GEA,那么CE=GE,AE=DE,进而可得BC=BG,那么CE⊥BE.
点评:考查梯形的常用辅助线方法的应用;碰到中点问题时构造全等三角形是常用的辅助线方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网