题目内容
已知二次函数
,当
,
有最大值为
,则
的值为_____________________.
若分式方程
无解,则m的值为( )
A. ﹣1 B. 0 C. 1 D. 3
A 【解析】去分母得:x+2=m, 由分式方程无解得到x=?3, 代入整式方程得:m=?1, 故选:A已知
﹣
=
,则
的值为( )
A.
B.
C. ﹣2 D. 2
如图,AB=AD,要说明△ABC≌△ADE,需添加的条件不能是( )
![]()
A. ∠E=∠C B. AC=AE C. ∠ADE=∠ABC D. DE=BC
查看答案如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪开后拼成一个长方形,上述操作能验证的等式是( )
![]()
A. (a+b)(a-b)=a2-b2 B. (a-b)2=a2-2ab+b2
C. (a+b)2=a2+2ab+b2 D. a2+ab=a(a+b)
查看答案如果分式
的值等于0,那么( )
A.
B.
C.
D. ![]()
计算(
﹣
)(
+
)的结果是( )
A. ﹣3 B. 3 C. 7 D. 4
查看答案 试题属性- 题型:单选题
- 难度:中等
解方程:x+5=x2-25.
x1=-5,x2=6 【解析】试题分析:移项,运用因式分解法即可求出方程的解. 试题解析:x+5=x2-25 x2-x-30=0 (x+5)(x-6)=0 x+5=0,x-6=0 x1=-5,x2=6.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=
AE2;④S△ABC=4S△ADF.其中正确的有___________.
![]()
如图,在两个直角三角形中,∠ACB=∠ADC=90°,AC=
,AD=2.当AB=_______时,△ABC与△ACD相似.
![]()
如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为 _______
![]()
设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n=__.
查看答案如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是( )
![]()
A. (-1,-2) B. (-1,1) C. (-1,-1) D. (1,-2)
查看答案 试题属性- 题型:解答题
- 难度:中等