题目内容
解分式方程:.
如图,是赛车跑道的一段示意图,其中AB∥DE,测得∠B=140°,∠D=120°,则∠C的度数为 度.
甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h.
(1)求甲车的速度;
(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.
菱形具有而一般平行四边形不具有的性质是( )
A. 对边相等 B. 对角相等 C. 对角线互相平分 D. 对角线互相垂直
已知正比例函数(a≠0)与反比例函数(k≠0)的图象在第一象限内交于点A(2,1)
(1)求a,k的值;
(2)在直角坐标系中画出这两个函数的大致图象,并根据图象直接回答时x的取值范围.
分解因式:= .
若正六边形的半径长为4,则它的边长等于( )
A.4 B.2 C. D.
如图,矩形ABCD中,AD=4,AB=2,以点A为圆心,AD为半径画弧交BC于点E,所得的扇形的弧长为_____________.
在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.
(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;
(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.