题目内容
计算:
(1)(
)2÷
;
(2)2-2+(-2)-3+(-
)-2×2-1.
(1)(
| x-y |
| x+2y |
| x2-y2 |
| x2+4xy+4y2 |
(2)2-2+(-2)-3+(-
| 1 |
| 2 |
分析:(1)先将原式因式分解,然后将除法转化为乘法后约分;
(2)根据负指数幂的定义解答.
(2)根据负指数幂的定义解答.
解答:解:(1)原式=(
)2÷
=(
)2•
=
;
(2)原式=
+
+
×
=
-
+4×
=2
.
| x-y |
| x+2y |
| (x-y)(x+y) |
| (x+2y)2 |
=(
| x-y |
| x+2y |
| (x+2y)2 |
| (x-y)(x+y) |
=
| x-y |
| x+y |
(2)原式=
| 1 |
| 22 |
| 1 |
| (-2)3 |
| 1 | ||
(-
|
| 1 |
| 2 |
=
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 2 |
=2
| 1 |
| 8 |
点评:本题考查了分式的混合运算、负整数指数幂,熟悉因式分解及负整数指数幂的定义是解题的关键.
练习册系列答案
相关题目