题目内容

已知:如图,以一底角为67.5°的等腰梯形ABCD的一腰BC为直径做⊙O,交底AB于E,且恰与另一腰AD相切于M。

(1)求证:△EOM为等腰直角三角形;
(2)求的值。
解:(1)证明:∵OM=OE
∴∠1=∠2=67.5°,
∵等腰梯形ABCD,
∴∠1=∠2=67.5°,
∴∠1=∠A,
∴OE∥AD,
∵AD与⊙O相切于M,
∴OM⊥AD,
∴OE⊥OM,
∴△EOM为等腰直角三角形;
(2)设⊙O的半径为r,OE=OM=r,
由(1)可知,∴∠OEM=45°,
∴ME=r,
∵∠3=180°-(∠OME+∠1)=180°-(67.5°+45°)=67.5°,
∴△AME∽△EOB,
∴BE∶AE=OE∶ME,
∴BE∶AE=r∶r=1∶=∶2。
练习册系列答案
相关题目