题目内容

如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE
(1)求证:四边形OGCH是平行四边形.
(2)当点C在上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度.
【答案】分析:(1)连接OC交DE于M,证矩形OECD,推出MC=MO,MG=MH即可;
(2)求出OC=DE=3,即可求出答案.
解答:解:(1)连接OC交DE于M,
∵CE⊥OB,CD⊥OA,∠BOA=90°,
∴∠CEO=∠BOA=∠CDO=90°,
∴四边形CEOD是矩形,
∴OM=CM,EM=DM,
∵EH=DG,
∴EM-EH=DM-DG,
即HM=GM,
∴四边形OGCH是平行四边形.

(2)DG不变.
在矩形ODCE中,∵DE=OC=3,
∵DG=GH=EH,
∴DG=DE=OC=1,
答:DG的长不变,DG=1.
点评:本题主要考查对矩形、平行四边形的性质和判定的理解和掌握,能求出MC=MO和MH=MG是解此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网