题目内容
计算:整式的运算和分式的化简
(1)(x+3)2﹣x(x+2); (2).
某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间和数据,结果如图,根据此条形图估计这一天该校学生平均课外阅读时间为( )
A. 0.96小时 B. 1.07小时 C. 1.15小时 D. 1.50小时
已知一元二次方程kx2+(2k﹣1)x+k+2=0有两个不相等的实数根,求k的取值范围.
关于x的一元二次方程x2+nx+m=0的两根中只有一个等于0,则下列条件正确的是( )
A. m=0,n=0 B. m≠0,n≠0 C. m≠0,n=0 D. m=0,n≠0
如图,已知二次函数y=x2+x﹣的图象与x轴交于点 A,B,交 y 轴于点 C,抛物线的顶点为 D.
(1)求抛物线顶点 D 的坐标以及直线 AC 的函数表达式;
(2)点 P 是抛物线上一点,且点P在直线 AC 下方,点 E 在抛物线对称轴上,当△BCE 的周长最小时,求△PCE 面积的最大值以及此时点 P 的坐标;
(3)在(2)的条件下,过点 P 且平行于 AC 的直线分别交x轴于点 M,交 y 轴于点N,把抛物线y=x2+x﹣沿对称轴上下平移,平移后抛物线的顶点为 D',在平移的过程中,是否存在点 D',使得点 D',M,N 三点构成的三角形为直角三角形,若存在,直接写出点 D'的坐标;若不存在,请说明理由.
现有五个小球,每个小球上面分别标着1,2,3,4,5这五个数字中的一个,这些小球除标的数字不同以外,其余的全部相同.把分别标有数字4、5的两个小球放入不透明的口袋 A 中,把分别标有数字1、2、3的三个小球放入不透明的口袋 B 中.现随机从 A 和 B 两个口袋中各取出一个小球,把从 A 口袋中取出的小球上标的数字记作 m,从 B 口袋中取出的小球上标的数字记作n,且m﹣n=k,则关于x的一元二次方程2x2﹣4x+k=0有解的概率是________.
如图,△ABC 是等腰直角三角形,分别以直角边 AC,BC 为直径画弧,若 AB=2,则图中阴影部分的面积是( )
A. B. C. D.
一个三角形的三边长分别为,,,则它的周长是______cm.
一个不透明的口袋里有 个除颜色外都相同的球,其中有 个红球, 个黄球.
(1) 若从中随意摸出一个球,求摸出红球的可能性;
(2) 若要使从中随意摸出一个球是红球的可能性为 ,求袋子中需再加入几个红球?