题目内容
分析:延长AB交MN于点P′,此时P′A-P′B=AB,由三角形三边关系可知AB>|PA-PB|,故当点P运动到P′点时
|PA-PB|最大,作BE⊥AM,由勾股定理即可求出AB的长.
|PA-PB|最大,作BE⊥AM,由勾股定理即可求出AB的长.
解答:
解:延长AB交MN于点P′,
∵P′A-P′B=AB,AB>|PA-PB|,
∴当点P运动到P′点时,|PA-PB|最大,
∵BD=5,CD=4,AC=8,
过点B作BE⊥AC,则BE=CD=4,AE=AC-BD=8-5=3,
∴AB=
=
=5.
∴|PA-PB|=5为最大.
故答案为:5.
∵P′A-P′B=AB,AB>|PA-PB|,
∴当点P运动到P′点时,|PA-PB|最大,
∵BD=5,CD=4,AC=8,
过点B作BE⊥AC,则BE=CD=4,AE=AC-BD=8-5=3,
∴AB=
| AE2+BE2 |
| 32+42 |
∴|PA-PB|=5为最大.
故答案为:5.
点评:本题考查的是最短线路问题及勾股定理,熟知两点之间线段最短及三角形的三边关系是解答此类问题的关键.
练习册系列答案
相关题目