题目内容
在Rt△ABC中,∠C=90°,AC=12,BC=15,AB=________,sinA=________,cosA=________,sin2A+cos2A=________,sinA________cosA(比较大小).
3
1 >
分析:利用勾股定理和锐角三角函数的概念进行求解.
解答:因为AB=
=
=
=3
,
所以sinA=
=
=
,
所以cosA=
=
=
,
所以sin2A+cos2A=1,
所以sinA>cosA.
点评:本题考查了锐角三角函数的概念.
分析:利用勾股定理和锐角三角函数的概念进行求解.
解答:因为AB=
所以sinA=
所以cosA=
所以sin2A+cos2A=1,
所以sinA>cosA.
点评:本题考查了锐角三角函数的概念.
练习册系列答案
相关题目
在Rt△ABC中,已知a及∠A,则斜边应为( )
| A、asinA | ||
B、
| ||
| C、acosA | ||
D、
|
| A、9:4 | B、9:2 | C、3:4 | D、3:2 |